Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Early JWST photometric studies discovered a population of UV-faint ( )z ∼ 6.5–8 Lyman break galaxies with spectral energy distributions implying young ages (∼10 Myr) yet relatively weak Hβ+ [Oiii] equivalent widths (EWHβ+ [Oiii] ≈ 400 Å). These galaxies seemingly contradict the implicit understanding that young star-forming galaxies are ubiquitously strong Hβ+ [Oiii] emitters, i.e., extreme emission line galaxies (EW ≳750 Å). Low metallicities, high Lyman continuum escape fractions, and rapidly declining star formation histories have been proposed as primary drivers behind low Hβ+ [Oiii] EWs, but the blend of Hβ+ [Oiii] in photometric studies makes proving one of these scenarios difficult. We aim to characterize this peculiar population with deep spectroscopy from the JWST Advanced Deep Extragalactic Survey. We find that a significant subset of these galaxies atz ≳ 2 with modest Hβ+ [Oiii] EWs (≈300–600 Å) have high ionization efficiencies ( ). Suppressed [Oiii] EW values yet elevated Hαand HβEW values imply that the level of chemical enrichment is the primary culprit, supported by spectroscopic measurements of metallicities below 12 + log(O/H) ≈ 7.70 (0.1Z⊙). We demonstrate that integrated Hβ+ [Oiii] selections (e.g., Hβ+ [Oiii] EW > 700 Å) exclude the most metal-poor efficient ionizers and favor (1) more chemically enriched systems with comparable extreme radiation fields and (2) older starbursting systems. In contrast, metallicity degeneracies are reduced in Hαspace, enabling the identification of these metal-poor efficient ionizers by their specific star formation rate.more » « lessFree, publicly-accessible full text available July 15, 2026
-
ABSTRACT JWST has recently sparked a new era of Lyα spectroscopy, delivering the first measurements of the Lyα escape fraction and velocity profile in typical galaxies at z ≃ 6−10. These observations offer new prospects for insight into the earliest stages of reionization. But to realize this potential, we need robust models of Lyα properties in galaxies at z ≃ 5−6 when the IGM is mostly ionized. Here, we use new JWST observations from the JADES and FRESCO surveys combined with VLT/MUSE and Keck/DEIMOS data to characterize statistical distributions of Lyα velocity offsets, escape fractions, and EWs in z ≃ 5−6 galaxies. We find that galaxies with large Lyα escape fractions (>0.2) are common at z ≃ 5−6, comprising 30 per cent of Lyman break selected samples. Comparing to literature studies, our census suggests that Lyα becomes more prevalent in the galaxy population towards higher redshift from z ∼ 3 to z ∼ 6, although we find that this evolution slows considerably between z ∼ 5 and z ∼ 6, consistent with modest attenuation from residual H i in the mostly ionized IGM at z ≃ 5−6. We find significant evolution in Lyα velocity profiles between z ≃ 2−3 and z ≃ 5−6, likely reflecting the influence of resonant scattering from residual intergalactic H i on the escape of Lyα emission near line centre. This effect will make it challenging to use Lyα peak offsets as a probe of Lyman continuum leakage at z ≃ 5−6. We use our z ≃ 5−6 Lyα distributions to make predictions for typical Lyα properties at z ≳ 8 and discuss implications of a recently discovered Lyα emitter at z ≃ 8.5 with a small peak velocity offset (156 km s−1).more » « less
An official website of the United States government
